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The Impact of Macrophage Insulin Resistance on Advanced
Atherosclerotic Plaque Progression

Ira Tabas, Alan Tall, Domenico Accili

Abstract: Atherothrombotic vascular disease is the major cause of death and disability in obese and diabetic
subjects with insulin resistance. Although increased systemic risk factors in the setting of insulin resistance
contribute to this problem, it is likely exacerbated by direct effects of insulin resistance on the arterial wall cells
that participate in atherosclerosis. A critical process in the progression of subclinical atherosclerotic lesions to
clinically relevant lesions is necrotic breakdown of plaques. Plaque necrosis, which is particularly prominent in
the lesions of diabetics, is caused by the combination of macrophage apoptosis and defective phagocytic
clearance, or efferocytosis, of the apoptotic macrophages. One cause of macrophage apoptosis in advanced plaques
is activation of a proapoptotic branch of the unfolded protein response, which is an endoplasmic reticulum stress
pathway. Macrophages have a functional insulin receptor signaling pathway, and downregulation of this pathway in
the setting insulin resistance enhances unfolded protein response—induced apoptosis. Moreover, other aspects of the
obesity/insulin-resistance syndrome may adversely affect efferocytosis. These processes may therefore provide an
important mechanistic link among insulin resistance, plaque necrosis, and atherothrombotic vascular disease and
suggest novel therapeutic approaches to this expanding health problem. (Circ Res. 2010;106:58-67.)
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he incidence of insulin resistance, metabolic syndrome,
and type 2 diabetes is rising rapidly because of the
epidemic of obesity in the industrialized world.! Although a
number of disease processes are associated with insulin
resistance and type 2 diabetes, the leading cause of morbidity
and mortality is cardiovascular disease.> An important factor

in accelerated heart disease in type 2 diabetes is likely to be
insulin resistance and hyperinsulinemia. For example, the risk
of cardiovascular disease is increased in metabolic syndrome,
which is characterized by insulin resistance without overt
hyperglycemia.3-> Moreover, rapid weight gain during child-
hood leads to hyperinsulinemia and increased coronary artery
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disease risk in adult life.> Part of the association between
insulin resistance and cardiovascular disease is related to
associated risk factors, including dyslipidemia (increased
very low—density lipoprotein, reduced high-density lipopro-
tein, and possibly altered low-density lipoprotein [LDL]),
hypertension, and a prothrombotic state.> However, insulin
resistance may have direct proatherogenic effects at the level
of the arterial wall, and an emerging concept that will be
explored in this review is that insulin resistance in lesional
macrophages promotes a series of cellular events critical for
advanced plaque progression. After a brief review of athero-
genesis, we will focus on new findings related to plaque
progression and the role of macrophage insulin resistance that
have appeared in the literature since the last review of this
topic in this journal in 2007.7

Principles of Atherogenesis

Plaque Initiation and Progression

Atherogenesis begins with the retention of atherogenic li-
poproteins in the subendothelium of susceptible areas of the
arterial tree.® In response to these retained lipoproteins,
particularly those that undergo atherogenic modifications
such as oxidation and aggregation, a series of biological and
maladaptive inflammatory responses ensue: (1) monocytes
and other inflammatory cells enter the intima; (2) monocytes
differentiate into macrophages, which then ingest retained
and modified lipoproteins and become cholesteryl ester-
loaded foam cells; (3) macrophages and other inflammatory
cells contribute to a state of inflammation that fails to
properly resolve; and (4) smooth muscle cells populate the
intima, leading to collagen synthesis.”~'> At this stage, the
plaques are usually asymptomatic because of outward remod-
eling of the artery to preserve lumenal blood flow and a
fibrous cap that protects the lesion from disruption.!34
However, some of these plaques, unrelated to plaque size per
se, may undergo necrotic breakdown, thinning of the fibrous
cap, a heightened state of inflammation, and an accumulation
of unesterified cholesterol.'>-1 Many of the hallmarks of
impaired inflammation resolution are evident in these
plaques, including continued entry and poor egress of inflam-
matory cells, defective clearance of apoptotic cells, and a
suppressed fibrotic “scarring” response.'>2° These so-called
“vulnerable plaques” are at risk for plaque disruption through
fibrous cap rupture or endothelial erosion, which in turn can
trigger acute thrombosis. If the thrombosis is extensive and
not quickly resolved, acute vascular occlusion and tissue
infarction occurs, leading to acute myocardial infarction,
unstable angina, sudden cardiac death, or stroke.

The exact mechanisms of plaque disruption are not known.
Cap thinning per se may be caused by a combination of
protease-mediated digestion of extracellular matrix mole-
cules, particularly by matrix metalloproteinases, and de-
creased collagen synthesis, perhaps exacerbated by death of
the collagen-synthesizing cells in the intima.'> These pro-
cesses, as well as coagulation and thrombosis, are likely
promoted by inflammatory cytokines, many of which are
secreted by lesional macrophages.'> Lesional necrosis of
vulnerable plaques, which is caused by the combination of
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Non-standard Abbreviations and Acronyms

Apoe apolipoprotein E
CaMKIl  calcium/calmodulin-dependent protein kinase Il
CHOP CEBP-homologous protein

EPA eicosapentanoic acid

ER endoplasmic reticulum

ERK extracellular signal-regulated kinases
Insr insulin receptor

IP3 inositol 1,4,5-triphosphate

LDL low-density lipoprotein

Ldir LDL receptor

MEK MAPK/ERK kinase

Mertk c-mer tyrosine kinase
NF-«B nuclear factor kB

PRR pattern recognition receptor

STAT signal transducer and activator of transcription

SERCA sarco-/endoplasmic reticulum calcium-dependent ATPase
UPR unfolded protein response

macrophage death and defective phagocytic clearance, or
“efferocytosis,” of dead macrophages,?'-2* can promote
plaque disruption by a number of mechanisms.!522.24-27 For
example, although matrix proteases are secreted by living
macrophages in lesions, they may also be released by dead
and dying macrophages.?® Moreover, lesional necrosis trig-
gers a heightened state of inflammation, which, as mentioned
above, promotes matrix metalloproteinase secretion, coagu-
lation, and thrombosis.?® Finally, the necrotic core is rich in
lipids and poor in cells and extracellular matrix, and the
structural properties resulting from this composition are
thought to contribute to mechanical stresses in the overlying
cap, which may contribute to cap rupture.?® Thus, macro-
phage death and defective clearance of the dead cells, leading
to lesional necrosis, are important processes in the formation
of the vulnerable plaque, and, as described in this review,
exacerbations of these processes may help explain acceler-
ated atherothrombotic disease in insulin-resistant states.

Mechanisms and Consequences of Macrophage
Death and Defective Efferocytosis in

Advanced Atheromata

To understand how insulin resistance may promote advanced
plaque progression in general, and plaque necrosis in partic-
ular, it is necessary to review our latest understanding of the
mechanisms and consequences of macrophage death in ad-
vanced atheromata. A number of hypotheses have been
conceived to explain advanced lesional macrophage apopto-
sis, and undoubtedly more than one mechanism is involved.
Examples include growth factor deprivation, toxic cytokines,
and oxidized lipids or lipoproteins,3! but there is as yet little
proof for these ideas in vivo. Recent mechanistic data in
cultured cells and correlative and genetic causation evidence
in vivo support a role for endoplasmic reticulum (ER) stress
in advanced lesional macrophage apoptosis and its major
consequence, plaque necrosis. As had been previously dem-
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onstrated in other models of ER stress—induced apoptosis,
macrophages subjected to ER stress undergo apoptosis in a
manner that is partially dependent on the CEBP-homologous
protein (CHOP) (GADD153 [growth arrest and DNA dam-
age]) branch of the ER stress pathway known as the unfolded
protein response (UPR).32:33 CHOP-mediated apoptosis can
be modeled in cultured macrophages by either potent induc-
ers of ER stress or by the combination of more subtle ER
stressors and a “second hit.” An example of an atherosclero-
sis-relevant inducer of single-hit ER stress apoptosis is
7-ketocholesterol,33-34 the most abundant oxysterol in ad-
vanced atherosclerotic lesions. Examples of the two-hit
model include the combination of low-level ER stressors with
pattern recognition receptor (PRR) ligands, such as modified
lipoproteins.?>3° Another example of the two-hit model is
incubation of macrophages with atherogenic lipoproteins
under conditions of genetic or pharmacological inhibition of
intracellular cholesterol re-esterification.’”-3% In this model,
which is often referred to as the “free cholesterol” model and
is designed to mimic free cholesterol-loaded macrophages in
advanced atheromata,*#% the ER stress hit is provided by
excess accumulation of unesterified cholesterol in the ER
membrane, and the second hit is activation of PRRs by the
lipoproteins themselves. The contribution of the second hit to
apoptosis involves both amplification of proapoptotic path-
ways and suppression of cell-survival pathways that are
activated in ER-stressed cells.?¢ The tendency of macro-
phages to undergo apoptosis when subjected to ER stress in
combination with PRR activation may have evolved as a host
defense mechanism against intracellular organisms that re-
quire living macrophages to survive.

Although it has been known that activation of the CHOP
pathway of the UPR can cause apoptosis, the molecular
mechanisms linking CHOP to death execution pathways is
poorly understood. Recent work in our laboratories has
provided evidence for a calcium-dependent mechanism in ER
stress—induced macrophage apoptosis. ER stress in macro-
phages leads to the release of calcium from the ER lumen into
the cytosol.3? The cytosolic calcium chelator BAPTA-AM
[acetoxymethyl ester of 1,2-bis(O-aminophenoxy)ethane-
N,N,N',N'-tetraacetic acid] can block ER stress—induced apo-
ptosis in macrophages, and recent work has shown that a key
integrator of cytosolic calcium and death execution in these
cells is a calcium-responsive kinase called calcium/calmod-
ulin-dependent protein kinase (CaMK)IL.364142 Activation of
CaMKII leads to multiple death pathways, including induc-
tion of the cell-surface death receptor Fas; stimulation of
mitochondrial calcium uptake and release of proapoptotic
cytochrome ¢ from the mitochondria; activation of proapo-
ptotic STAT-1 (signal transducer and activator of transcrip-
tion 1); and accumulation of reactive oxygen species through
activation of NADPH oxidase.#> CHOP amplifies this
calcium-death pathway by leading to activation of inositol
1,4,5-triphosphate (IP3) receptors, which are calcium-release
channels in the ER membrane.*> The mechanism involves
oxidative activation of IP3 receptor by the downstream
CHOP transcriptional target, ER oxidase-la. Net calcium
release can also be promoted through inhibition of sarco-/
endoplasmic reticulum calcium-dependent ATPase

(SERCA), which pumps calcium back into the ER lumen.
SERCA is inhibited by alterations in the ER membrane by
certain ER stressors, such as unesterified cholesterol or
saturated fatty acids,** and SERCA is downregulated in the
setting of insulin resistance, as will be summarized below.

Macrophage apoptosis by itself would not be expected to
be detrimental, because apoptotic cells are normally cleared
rapidly by phagocytosis (“efferocytosis”) in a manner that
prevents postapoptotic cellular necrosis and that promotes
antiinflammatory processes.?’ Indeed, manipulations that ac-
celerate early lesional macrophage apoptosis decrease lesion
cellularity and plaque progression, and vice versa,?>*> sug-
gesting that efferocytosis is very efficient in the early stages
of atherogenesis. This principle has been applied recently to
a mouse model of type 2 diabetes and early atherosclerosis.*
However, in the later stages of atherosclerosis, macrophage
apoptosis is associated with plaque necrosis,?® and there is
evidence in humans that efferocytosis is defective in ad-
vanced plaques.*” The mechanisms of defective efferocytosis
in advanced lesions are not known, but several interesting
ideas have been advanced based on in vitro and in vivo
observations. For example, oxidized lipids and proteins exist
in these plaques, and some of these molecules can competi-
tively inhibit efferocytosis by binding to efferocytosis recep-
tors.48 Thus, to the extent that these oxidized molecules
accumulate as lesions progress,'® they may reach a high
enough level in advanced atheromata to take on this compet-
itive inhibitory role. In another scenario, the efferocytosis
receptor Mertk (c-mer tyrosine kinase) has been shown to
play a role in efferocytosis and plaque necrosis in mouse
lesions,**-30 and inflammation-induced cleavage of this recep-
tor by membrane sheddases>' may contribute to defective
clearance of apoptotic cells in advanced plaques. The fact that
inflammation increases as lesions progress may offer an
explanation as to why this antiefferocytic process occurs only
in advanced plaques.

The concept that ER stress—induced macrophage apoptosis
in combination with defective efferocytosis in advanced
lesions promotes plaque necrosis is supported by a number of
genetic-causation studies in mice and by correlative studies in
humans. In fat-fed apolipoprotein E-null (Apoe) '~ or LDL
receptor—null (Ldlr)_/ " mice, ER stress markers are induced
as lesions progress.322-5¢ Most importantly, genetic targeting
of CHOP and STAT-1, the proapoptotic signaling transducer
activated by the CHOP calcium—CaMKII pathway (above), as
well as prevention of cholesterol-induced ER damage, inhibit
advanced lesional macrophage apoptosis and plaque necro-
8is.33:42.52 Moreover, deletion of two “second-hit” PRRs (SRA
and CD36) decreases macrophage apoptosis and plaque
necrosis in the lesions of fat-fed Apoeil ~ mice.57 In humans,
there are close correlations among markers of ER stress,
apoptosis, and plaque vulnerability in coronary arteries.>> In
terms of efferocytosis, studies have shown an increase in
plaque necrosis that correlates with a worsening of lesional
efferocytosis in several mouse models in which efferocytosis
effectors have been targeted, including c-mer tyrosine kinase,
MFG-E8 (milk fat globule epidermal growth factor 8),
transglutaminase-2, and complement factor C1q.4>->% In sum-
mary, in vitro and in vivo evidence support a model in which
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Figure 1. A CHOP-calcium pathway of
ER stress-induced apoptosis in macro-
phages. A diverse array of ER stress—pro-
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l advanced atheromata, triggers the UPR
and leads to induction of the downstream

effector CHOP. CHOP induces ER
oxidase-1a (ERO1a), which in turn oxida-
tively activates IP3 receptor (IP3R) cal-
cium release channels in the ER. IP3
receptor-mediated calcium release begins
a proapoptotic cascade involving activa-
tion of CaMKIl by cytosolic calcium and
subsequent downstream apoptotic pro-
cesses, as listed in the figure and as
described in the text. In addition, the
resulting low level of calcium in the ER

lumen likely causes dysfunction of calcium-dependent protein chaperones, which amplifies UPR activation. The central concept is that
proapoptotic CHOP functions, at least in part, by promoting calcium-induced death as part of a positive feedback cycle (see inset).

macrophage apoptosis in advanced lesions, induced in part by
a proapoptotic ER stress—calcium pathway, plus defective
efferocytosis promote plaque necrosis (Figure 1). Because
plaque necrosis is strongly associated with disrupted plaques
and acute lumenal thrombosis,>® and because plaque necrosis
is particularly prominent in atherosclerotic lesions from
diabetic subjects, as described in the following section, these
insights should be useful in our understanding of and thera-
peutic approaches to accelerated plaque progression in the
setting of insulin resistance.

Macrophage Death and Plaque Progression in
Insulin Resistance

Plaque Necrosis in Human Diabetic Coronary
Artery Lesions

It is now well-established that type 2 diabetes and insulin
resistance are major risk factors for atherothrombotic vascu-
lar disease.> Although many theories have arisen to explain
this relationship,®®-¢! a common end point of plaque progres-
sion associated with atherothrombotic vascular disease, as
mentioned in the previous section, is plaque necrosis. In this
context, a number of independent studies have found that
advanced atherosclerotic lesions in diabetic subjects are
characterized by particularly large necrotic cores when com-
pared to similarly sized lesions from nondiabetic individu-
als.%2-%7 For example, Burke et al®? found that necrotic core
size in the coronary arteries of subjects who died suddenly
was positively correlated with the presence of diabetes
independently of other factors. Similar results were found
when coronary atherectomy specimens of diabetics and non-
diabetics were compared.®® Nasu et al®* used virtual histology
based on intravascular ultrasound data to assess coronary
arterial necrotic cores in nondiabetic and diabetic patients
with stable angina and found an approximate 50% increase in
the percent area covered by necrotic cores in the diabetic
group. Almost identical findings were reported in similar
studies conducted by Hong et al®5 in Korea and Pundziute et
al®¢ in the Netherlands. A prospective study of subjects with
coronary artery disease in which radiofrequency data from
intravascular ultrasound was used to assess necrotic core size
in coronary arteries found that only diabetes and age were
associated positively with necrotic core size in logistic

regression analysis.®” These collective data raise the issue as
to whether the cellular events described in the previous
sections, particularly advanced lesional macrophage apopto-
sis and/or defective efferocytosis, are enhanced in the setting
of diabetes, leading to increased plaque necrosis and, ulti-
mately, accelerated atherothrombotic vascular disease.

The Effect of Insulin Resistance on Macrophage
Death Pathways

In view of the role of insulin resistance in diabetic heart
disease and the larger necrotic cores in the coronary arteries
of diabetic subjects, we and others have examined how
insulin resistance at the level of the macrophage affects
mechanisms and consequences of macrophage death in vitro
and in vivo. Macrophages have insulin receptors, and acute
exposure of the cells to insulin in vitro results in phosphor-
ylation of the insulin receptor, insulin receptor substrate-2,
and Akt, leading, among other responses, to nuclear exclusion
and inactivation of FoxO transcription factors.”°® Moreover,
pretreatment of macrophages in vitro with high-dose insulin
leads to downregulation of their insulin receptors and sup-
pression of insulin receptor signaling, which is also observed
in freshly isolated macrophages from insulin-resistant mice,
such as the hyperinsulinemic leptin-deficient ob/ob mouse.%%
Thus, macrophages show the hallmarks of “insulin resis-
tance” at a cellular level in the setting of high insulin
concentrations.

Macrophages rendered insulin resistant through preincuba-
tion with insulin, genetic deletion of the insulin receptor, or
pharmacological inhibition of insulin signaling, and macro-
phages freshly isolated from hyperinsulinemic mice, show an
increase in the levels of the scavenger receptor SRA.768 As
mentioned in the previous section, SRA can serve as a
“second-hit” PRR in ER stress—induced macrophage apopto-
sis both in vitro and in advanced lesional macrophage death
and plaque necrosis in vivo. In this regard, insulin-resistant
macrophages show markedly enhanced apoptosis in vitro
when exposed to ER stress conditions plus an SRA-mediated
second hit, as is the case with macrophages loaded with
lipoprotein-derived unesterified cholesterol.36:69-70

ER stress in macrophages triggers compensatory cell-
survival pathways, notably those activated by Akt and nuclear
factor (NF)-«B, and apoptosis is temporally correlated with a
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downregulation of these pathways and can be accelerated by
their inhibition.3671.72 Moreover, Akt deficiency in Apoe '~
mice was shown to enhance lesional macrophage apoptosis
and inflammation and plaque progression.”? In this context,
an important observation was that phosphorylation of Akt is
suppressed in ER-stressed, insulin-resistant macrophages.®-7!
Consistent with a decrease in Akt phosphorylation, Senoku-
chi et al”! found an increase in nuclear FoxO1 in insulin-re-
sistant, ER-stressed macrophages, which normally translo-
cates to the cytoplasm in response to Akt-dependent
phosphorylation.” Moreover, macrophages genetically lack-
ing FoxOl, 3 and 4, were resistant to ER stress—induced
apoptosis.”! However, FoxO-overexpression experiments in-
dicated that nuclear localization of these transcription factors
was not by itself sufficient for macrophage apoptosis but
rather led to an enhancement of apoptosis in the setting of
ER stress. The apoptosis-enhancing mechanism of FoxO1
is directly related to the role of another compensatory
cell-survival factor in ER-stressed macrophages, namely
NF-kB.71.72.75.76 In ER-stressed macrophages, FoxOl in-
duces the expression of the NF-«kB inhibitor IkBe and
thereby enhances apoptosis.”!

Importantly, insulin resistance potentiates the ER stress
response itself.”” ER stress in macrophages leads to activation
of the mitogen-activated protein kinase extracellular signal-
regulated kinase (ERK),”® and Liang et al”” found that this
response was blunted in insulin-resistant macrophages. Ad-
ditional studies revealed that the mitogen-activated protein
kinase/ERK kinase (MEK-ERK) pathway induces SERCA,””
which, as explained above, can abrogate ER stress by
replenishing ER lumenal calcium stores and can protect
macrophages from ER stress—induced apoptosis by lowering

cytosolic calcium levels. Thus, the blunted MEK-ERK-
SERCA pathway in insulin-resistant macrophages exacer-
bates the ER stress response and the calcium-mediated
apoptosis pathway described above, and restoration of MEK1
in these cells is protective against both ER stress and
apoptosis.”’

In summary, mechanistic studies using various cell culture
models of insulin-sensitive and insulin-resistant macro-
phages, including primary macrophages freshly harvested
from ob/ob mice, have revealed an integrated pathway of cell
signaling events responsible for the increased apoptotic re-
sponse to ER stress in the setting of insulin resistance. Key
among these events are those related to the compromise of
compensatory cell survival pathways and the exacerbation of
proapoptotic calcium signaling pathways (Figure 2).

The Effect of Macrophage Insulin Resistance on
Murine Atherosclerosis

To test relevance of enhanced ER stress—induced apoptosis in
insulin-resistant macrophages in vivo, irradiated Ldlr—'~
mice were transplanted with bone marrow from insulin
receptor (Insr)™'" or Insr~'~ mice.% It should be noted that
this proof-of-concept model represents the most extreme
form of “insulin resistance.” After recovery of the graft, the
mice were fed a high-fat diet, and lesions were analyzed for
overall area and, most importantly, plaque morphology.
Consistent with the in vitro data, the advanced lesions of the
Insr~'~—Ldlr~'~ mice fed the diet for 12 weeks had more
apoptotic cells, particularly in macrophage-rich regions of
the plaque, and more plaque necrosis than those of the
Insr™'*—Ldlr~'~ control mice. Overall lesion area, the less
important end point for the hypothesis being tested, showed
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no change after 8 weeks of diet and only a modest increase
after 12 weeks. Baumgartl et al’® used the cre-lox system to
create Apoe '~ with macrophage-targeted deficiency of in-
sulin receptors. After 4 months on a high-fat diet, these mice
had a modest decrease in lesion area compared with control
Apoe™'~ mice. Apoptotic cells and necrotic areas were not
quantified. Immortalized macrophages derived from these
mice had a marked reduction in LPS-induced interleukin-6
secretion. The authors also tested the effects of global and
bone marrow-derived insulin receptor substrate-2 deficiency
in fat-fed Apoe ™~ mice. In the holo-knockout model, lesion
area was modestly increased, and in the bone marrow
transplant model, lesion area was modestly decreased. Plaque
morphology was not quantified. The authors interpreted these
data as showing that myeloid-derived insulin receptors sup-
press atherosclerosis by blunting the inflammatory re-
sponse.”® Senokuchi et al’! also observed decreased inflam-
matory responses during ER stress in insulin-resistant
macrophages. In that study, reduced NF-«B responses led to
both increased apoptosis, as noted in the previous section, and
decreased expression of some inflammatory genes. In sum-
mary, a careful comparison of Han et al®® and Baumgartl et
al’® reveal a common finding of relatively modest effects of
macrophage insulin resistance on overall lesion size, with
subtle differences between the two studies perhaps arising
from differences in genetic background (mixed versus inbred
C67BI/6]), diets used (Western-type diet versus the proin-
flammatory high-cholesterol/bile salt diet), and stage of
lesion development. As noted, those specific features of
atherosclerotic lesions related to the novel concept that
insulin-resistant macrophages are more susceptible to apopto-
sis, ie, advanced lesional macrophage apoptosis and plaque
necrotic area, were assessed in only one of the two studies,
and the data supported that concept.®®

Our laboratories have been working with another model of
advanced lesional apoptosis and plaque necrosis in mice that
may relate to the findings above. During certain types of ER
stress, macrophages respond with activation of a compensa-
tory cell-survival pathway in which the MAP kinase p38a
enhances phosphorylation/activation of Akt, a potent survival
signal in these cells (see previous section).” In essence, this
ER stress—activated pathway delays or suppresses apoptosis,
but eventually the survival pathway gets overwhelmed, and
apoptosis ensues. As predicted by this concept, we found that
gene-targeting of macrophage p38a partially impedes Akt
activation and promotes ER stress—induced apoptosis both in
vitro and in advanced plaques in fat-fed Ldlr~’~ mice.
Because insulin resistance also partially impedes Akt signal-
ing, we reasoned that the two pathways might be additive.
Indeed, treatment of macrophages from Insr™'":Ldlr~’~ mice
with an ER stressor plus a p38 inhibitor enhanced apoptosis
to a very high level, ie, above the high level already seen
when these macrophages are subjected to ER stress alone”
(see previous section). These findings further demonstrate the
importance of defective Akt signaling, a critical component
of intact insulin receptor signaling, in ER stress—induced
macrophage apoptosis and raise caution about the use of p38
inhibitors, currently under development as antiinflammatory
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agents in a number of diseases including type 2 diabetes,3° in
insulin-resistance subjects.

Two models of global insulin resistance have also shown
an effect on plaque necrosis. A recent study examining
Western diet-fed ob/ob;Ldlr~'~ mice, which have obesity and
insulin resistant secondary to leptin deficiency, showed an
increase in necrotic core size compared to similarly fed
Ldlr~'~ mice.8! As explained below, the mechanism not only
involves increased susceptibility to apoptosis but also defec-
tive efferocytosis in the macrophages of these mice. Hsueh
and colleagues®? compared 3 months/old and 12 months/old
Ldlr~'~ mice fed a high-fat diet for 3 months. The older mice
developed worse insulin resistance and worse atherosclerosis
than the younger mice, and the lesions in the older mice
appeared to be associated with a marked increase in plaque
necrosis. The insulin-resistant older mice had a blunted
antioxidant response that might be caused by a defective
DJ-1-Nrf2 antioxidant pathway,®* and a higher lesional
expression of the NADPH oxidase subunit, p47. Atheroscle-
rosis and plaque morphology were improved by treating the
mice with the NADPH oxidase inhibitor and antioxidant,
apocynin. One implication of these findings is that aging, a
major risk factor for cardiovascular disease in humans,** may
interact with insulin resistance to promote plaque necrosis,
and in this regard it is interesting to note that aging is
associated with both enhanced ER stress and defective
efferocytosis.®>-8¢ Second, a critical downstream proapoptotic
effector of ER stress and ER calcium release is activation of
NADPH oxidase, and, given the pathways described in
Figure 2, this response may be further enhanced in the setting
of insulin resistance. Although vitamin E has not been shown
to be effective in decreasing cardiovascular risk in humans,8’
more targeted antioxidants, such as NADPH oxidase inhibi-
tors, in the specific setting of insulin resistance and possibly
aging, may be more mechanistically justified and have more
promise.

How Insulin Resistance Might Affect Efferocytosis
The increase in plaque necrosis in diabetic lesions raises the
important issue as to whether efferocytosis is defective in
these lesions and, if so, how this is mechanistically linked to
insulin resistance. For example, defective phosphatidylinosi-
tol 3-kinase signaling in the setting of insulin resistance
could, in theory, lead to a defect in efferocytosis in general
and a specific defect in c-mer tyrosine kinase-mediated
efferocytosis in particular.8®8° Using an in situ assay that
quantifies the percentage of apoptotic cells that have been
engulfed by phagocytic macrophages versus not associated
with phagocytes,*® Li et al®! found that the aortic root lesions
of Western diet—fed ob/ob;Ldlr~'~ mice had evidence of
defective efferocytosis and, as predicted, increased plaque
necrosis compared with lesions of Western diet—fed Ldlr '~
mice. In vitro studies showed that primary macrophages
isolated from ob/ob mice have a defect in efferocytosis that
was associated with defective PI3 kinase activity, but those
from Insr~'~ mice do not. Further studies revealed that the
key defect in ob/ob macrophages was an increase in the
saturated fatty acid:unsaturated fatty acid ratio in the macro-
phage membranes, perhaps through “stiffening” the plasma
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membrane to the point where phagocytosis is compromised.®°
The efferocytosis defect on ob/ob macrophage could be
corrected by treating the cells with the omega-3 polyunsatu-
rated fatty acid eicosapentanoic acid (EPA), and similar
results were found when macrophages were harvested from
EPA-fed ob/ob mice. Most importantly, lesional efferocytosis
was improved in ob/ob;Ldlr '~ mice by EPA feeding, which
interestingly has also been associated with protection from
heart disease in humans.®! The precise mechanism of how
saturated fatty acid impair efferocytosis and how EPA im-
proves it is still under investigation, as are other possible links
between insulin resistance and clearance of apoptotic cells.
Nonetheless, we can begin to imagine an integrated model in
which direct effects of insulin resistance on advanced lesional
macrophage apoptosis, combined with defective efferocytosis
caused by systemic fatty acid defects in the setting of insulin
resistance, can at least partially explain the large neurotic
cores and accelerated thrombotic vascular disease in diabetics
(Figure 2).

Conclusions and Future Directions

This review focused on one key feature of type 2 diabetes,
insulin resistance; one type of lesional cell, the macrophage;
and one overall context of atherosclerosis, advanced plaque
progression. Even within this focused area of research, more
work is needed to further define mechanisms whereby insulin
resistance affects specific signaling pathways involved in the
panoply of atherosclerosis-relevant macrophage activities,
including, interaction with lipoproteins and intracellular me-
tabolism of lipoprotein-derived lipids; inflammation and the
resolution thereof; stress responses, including oxidative, heat
shock, and ER stress; secretion of proteases, procoagulant
molecules, and other factors involved in plaque progression;
phagocytosis, efferocytosis, and antigen presentation; apopto-
sis-cell survival balance; and interaction with other cells and
extracellular matrix. Moreover, it is likely that insulin resis-
tance affects these processes differently in different subsets of
macrophages and in other types of myeloid cells, notably
dendritic cells, mast cells, and neutrophils. A limitation of our
in vivo studies has been the lack of a mouse model that fully
recapitulates features of human plaque disruption and athero-
thrombosis,®? and so further developments to improve mouse
models of diabetic atherothrombotic vascular disease is an
important goal. Nonetheless, it is becoming clear that key
morphological features of such plaques are worsened by ER
stress3? and insulin resistance in macrophages.®®

Beyond the specific areas of plaque macrophages, insulin
resistance, and advanced plaque progression, other areas of
focus may offer additional clues as to why heart disease is
enhanced in type 2 diabetes.®! For example, decreased insulin
signaling in endothelial cells, through impaired Akt signaling,
is also likely to have important proatherogenic consequences
through decreased endothelial nitric oxide synthase activity
and increased expression of inflammatory genes and vascular
cell adhesion molecule-1.73 In the liver, hyperinsulinemia and
insulin signaling may increase VLDL secretion while having
the opposite effects on LDL receptor expression.®> The other
major feature of type 2 diabetes, hyperglycemia, may pro-
mote plaque instability by enhancing the inflammatory re-

sponse in macrophages through effects on plasma triglycer-
ide-rich lipoproteins and free fatty acids.®* Hyperglycemia
may also cause endothelial cell abnormalities, including
oxidative stress and RAGE-induced inflammation, that pro-
mote the earlier stages of atherogenesis.”>¢ Interestingly,
there are recent data suggesting that hyperglycemia may exert
some of its proatherogenic effects in endothelial cells through
FoxOl1 and also through the induction of ER stress.®”-°8 These
hyperglycemia—endothelial cell studies, together with the
insulin resistance—macrophage studies described in this re-
view, raise the interesting possibility that hyperglycemia may
affect mostly the earlier stages of atherogenesis, whereas
insulin resistance has its greatest effect on promoting ad-
vanced plaque progression. In this context, a recent analysis
of the Veterans Affairs Diabetes Trial found that intensive
glucose lowering reduced cardiovascular events in diabetics
with a coronary artery calcium store <100 (multivariable
hazard ratio [HR]=0.08, P=0.03), but not in those with a
calcium score >100 (HR=0.74, P=0.21).°° Smooth muscle
cells, a key cell type in the generation of the “protective”
fibrous cap in advanced lesions, and platelets, the final
effector of acute vascular occlusion, may be affected by
insulin resistance, hyperglycemia, or fatty acid abnormalities,
which provide additional opportunities for investigation.®!
Continued progress in these areas will provide a more
complete understanding of how multiple features of diabetes
promotes heart disease.

The ultimate goal of these studies is to complement our
current efforts at identifying and treating systemic risk factors
that promote cardiovascular disease in diabetics. Despite the
relative success of this strategy, risk is still very high,!° and
the tremendous scale of this epidemic is such that overall risk
will still be high even if compliance is improved and the
experimental modalities prove useful. Further understanding
of the specific mechanisms of increased vascular disease in
diabetics, particularly at the molecular level in arterial wall
cells, may be a promising approach for further eradication in
the future, and one that should be additive or even synergistic
with reduction of lipid and other systemic risk factors. One
approach is to increase insulin sensitivity in diabetic macro-
phages, such has been demonstrated recently using a perox-
isome proliferator-activated receptor vy activator in vivo©s and
1,25(0OH), vitamin D in vitro.'°! Another approach is to
develop agents to prevent ER stress or downstream proapo-
ptotic processes in macrophages by pharmacological means,
eg, through the use of chemical chaperones!©? or inhibitors of
the calcium-mediated proapoptotic pathway.!031%* Moreover,
in view of the importance of defective efferocytosis in the
generation of plaque necrosis and the ob/ob efferocytosis
study described above, experimental therapeutic modalities
designed to enhance efferocytosis®®10> may be particularly
useful in diabetics. Delivery of such drugs to plaques might
be facilitated by specific vehicles targeted to plaques,'®
whereas clinical assessment in phase II and phase III studies
could be assisted by imaging techniques, such as carotid
MRI, that have the capacity to measure important plaque
features such as necrotic core area and cap thickness.!'"”
Studies in these areas occurring in parallel with ongoing
efforts at systemic risk reduction offer the best chance to curb
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growing epidemic of diabetes-associated atherothrom-

botic vascular disease.
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